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Abstract
We study a three-band effective model of a CuO2 plane for the simple case
of a single hole, with the aim of investigating the nature of the ground state
stabilized by the motion of a single hole on the CuO2 lattice. Our model is
derived from, and retains the essential physics of the Anderson lattice model,
but is more amenable to further investigation by virtue of the lifting of the spin
degeneracy on the copper sites provided by perturbation theory.

We use the Lanczos algorithm to numerically solve a series of finite
systems which tend to the CuO2 plane in the thermodynamic limit. Although
we only study finite systems, the largest systems are sufficiently large to
demonstrate behaviour that is independent of the boundary conditions, and
is hence representative of the behaviour in the thermodynamic limit. In order
to gain a good understanding of the competing energy scales, we consider only
a single hole at T = 0.

Our calculations predict that the ground state of the three-band model for a
single hole is strongly quantum, dominated by short-range dimer correlations,
reminiscent of a resonating valence bond state. There is no evidence for a
discontinuity in the occupation number, indicating that the system is not a
Fermi liquid.

These predictions are in contrast to those of the t–J model, where the hole
motion alone predicts Nagaoka ferromagnetism for the planar system, and one
must include magnetic exchange terms in order to obtain the experimentally
observed low-spin ground state.

PACS numbers: 01.30.Cc, 71.10.Fd, 71.10.Hf, 71.27.+a, 74.20.Mn, 74.72.−h
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1. Introduction

In this paper, we present a numerical investigation of a single hole in a high-temperature
superconductor. We elect to study a limit of the natural Anderson lattice model (ALM) for the
cuprates which retains the three-band character of the ALM. This model allows us to study
the competition between energy scales that underpins the unusual behaviour of the cuprates.
Several other authors have studied similar models [1, 2], but none appears to have numerically
studied the single-hole limit. Although this may seem to be a very simple system, it allows
us to investigate the nature of the ground state induced by the motion of a single hole on the
CuO2 lattice. It is this apparently simple question which we will attempt to answer in this
paper.

The natural Hamiltonian for the CuO2 planes is the ALM, given by

HALM = −�
∑

iσ

d
†
iσ diσ + U

∑

i

d
†
i↑di↑d

†
i↓di↓ + V

∑

〈i,j 〉σ

(
d
†
iσ pjσ + p

†
jσ diσ

)
(1)

where we have chosen a uniform phase for the hybridization for convenience, equivalent to
translating reciprocal space by (π, π). The operators d

†
iσ and p

†
jσ create copper holes on site i

and oxygen holes on site j , respectively, with σ labelling the spin of the hole. � is the energy
gained by putting holes on copper sites, U is the Coulomb penalty for double occupation of
copper sites, and V is the copper–oxygen hybridization energy. The on-site oxygen energy
has been set to zero for simplicity as we are only considering constant doping in this work. In
the undoped limit, each copper site in the CuO2 planes is Cu2+ and so is occupied by a hole
of spin one-half. The oxygen states are O2− and are filled shell. In the hole-doped cuprates,
doping occurs on the oxygen sites with O2− ions becoming O−.

The most popular approach to this model was first proposed by Zhang and Rice [3]. Their
idea was to examine all possible local states involving a single oxygen hole delocalized around
a copper ion. They found that the lowest energy of this local state was obtained when the
oxygen hole was tightly bound in a local singlet with the copper local moment. This idea
allows the ALM to be reduced to a single band, U = ∞ Hubbard model on the copper sites
only: the t–j model, which has been extensively studied (see, for example, the review article
by Dagotto [4]).

Although the t–J model is attractive for its inherent simplicity, it is not clear whether
this model retains the essential physics of the ALM. Certainly, it does not if one ignores
superexchange, with the resulting t-model giving Nagaoka ferromagnetism on the square
lattice [5], and hence superexchange is required to give the experimentally observed low-spin
ground state. The addition of t ′ and t ′′ has been found to reproduce the experimental band
structure more faithfully [6], and it is now more common to study the t–t ′–t ′′–J model. We
criticize this modification on the basis that it is based on phenomenological considerations
rather than a clear understanding of the underlying physical processes. On these grounds, we
have chosen to study the ALM directly, retaining the three-band character of the model, with
the aim of gaining a clear physical picture of the nature of the ground state induced by hole
motion alone.

In the undoped parent compounds, there is massive spin degeneracy due to the presence
of a single hole on each copper site. Upon doping, there is additional degeneracy from the
position of the oxygen hole, and its spin. This degeneracy is lifted by second-order perturbation
theory in V , and we obtain a new effective Hamiltonian, the t–X–J model:

Heff = X
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where X = UV 2

�(U−�)
, t = V 2

U−�
and J = 4V 4

�3 + 4V 4

�2U
. This reduction to an effective model

requires that U − �,� � V , and physically corresponds to the elimination of the copper
charge degree of freedom. This is experimentally relevant as the system is a robust Mott
insulator. Note that we retain the basic three-band picture inherent in the physical material,
with a flat, non-bonding oxygen band sandwiched between bonding and anti-bonding hybrid
bands.

In this paper, we restrict our attention to the case t = 0 for simplicity. This corresponds
to the physical limit U − � � �, which is appropriate to the real physical system. We
have studied non-zero values of t, and have found that the nature of the ground state at t = 0
is preserved up to t/X = �/U ≈ 0.25. Above this, the ground state does not have the
experimentally observed low total spin, and the model is equivalent to the Nagaoka problem.
At t = X, this equivalence can be rigorously demonstrated. In the real physical system,
we expect that t/X ≈ 0.1. We also set J = 0 since it is much smaller than both t and X,
and correlations induced by the hole motion will dominate over superexchange correlations.
In fact, we will see that the hole motion alone induces a low-spin ground state which is
significantly different to that induced by the Heisenberg interactions, and we wish to highlight
the basic nature of this state.

We have deliberately chosen not to include other physical terms such as direct oxygen–
oxygen hopping tp, Coulomb repulsion on the oxygen sites Up, and inter-atom Coulomb
repulsion Upd in order to keep the model as simple as possible. In fact, both first- and second-
neighbour oxygen hopping is present in the second-order effective Hamiltonian , and the direct
inclusion of tp amounts to an anisotropic reparametrization of t. We ignore Up and Upd on the
assumption that U is much larger than each of these and will dominate the correlation effects.

We are also limited to studying T = 0 since our chosen technique, the Lanczos algorithm,
fails at finite temperature. Recent work by Long et al [7] indicates that there may be a solution
to this difficulty.

2. Method of study

The principal method we use to study the t–X model is exact diagonalization using the Lanczos
algorithm. Like most other models of strongly correlated systems, the model is not amenable
to an exact solution and we must rely on approximate methods. Exact diagonalization is
the first step towards formulating a controlled approximation scheme which encompasses the
major features of the model. We choose to exactly solve finite systems using the Lanczos
algorithm, and then attempt to scale the results to infinite system size. Of crucial importance
to good scaling is the correct choice of geometry: we require a geometry which scales to the
square lattice as we take the infinite limit. Whilst one may choose to study square clusters
(3×3, 4×4, etc), one can only study a very few of these systems before the problem becomes
too large for the computer. To overcome this difficulty we choose to study the linear chain
with extra bonds of length p, which corresponds to the square lattice in the limit that both the
system size N and the length of the extra bond p are taken to infinity. The case of additional
fifth-neighbour bonds (p = 5) is depicted in figure 1, which clearly shows that such systems
are best considered as a ‘spiral’.

We note that when this geometry is considered as a modified linear chain, the associated
reciprocal space can be considered to be a line which crosses the Brillouin zone of the square
lattice p times, yielding a multi-part Fermi volume. This choice of geometry allows us to
effectively scale the results of finite system calculations to infinite systems. The methodology
is to consider each value of p individually. For a given p, we calculate for many values of
the system size N, and then scale the results to N 	→ ∞. This is repeated for many different
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p=5

Figure 1. An example of the spiral geometries (p = 5) used in exact diagonalization calculations.
The circles represent the location of copper ions, the oxygen ions have been omitted for clarity,
and sit midway between each connected pair of copper ions.

values of p, and we then attempt to converge to the limit p 	→ ∞. These calculations are
complicated by the presence of two types of boundary conditions. Under the assumption that
the boundary conditions are closed, the geometry is a spiral coiled around a torus, and this
yields (global) boundary conditions around the entire system, and (local) boundary conditions
around each ‘segment’ of the spiral. Each of these can be either periodic or aperiodic, giving
a total of four possible combinations of boundary conditions. In the thermodynamic (infinite)
limit, we expect the results to be independent of the boundary conditions.

The question in which we are most interested in this work is whether the system is a
Fermi liquid, and if it is not, then to identify what it actually is. We are also interested
in examining the nature of the spin correlations that are induced by the motion of a single
hole. The quantities which allow us to investigate these issues are the oxygen hole occupation
number, 〈n(k)〉 and the static copper spin correlations 〈|Sk|2〉, respectively.

In order to ask whether the system is a Fermi liquid or not, we must ask what happens
when a hole is added to the system. What is the distribution in reciprocal space? Is there
a well-defined Fermi surface? The ability to calculate 〈n(k)〉 allows us to answer these
questions. The calculation is straightforward, and we have to calculate

〈n(k)〉 = 1

N

∑

σjn

〈
p
†
j,σ pj+n,σ

〉
cos kn. (3)

Note well that we are working with three atoms per unit cell, comprising one copper and two
oxygen atoms, and we calculate the occupation of the oxygen sites only. This means that the
quantity

〈
p
†
j,σ pj+n,σ

〉
has four components, associated with transitions between the different

sublattices, and the physically interesting quantities are the eigenvalues of the associated
matrix. The states in the unit cell actually split into bonding and non-bonding configurations,
of which only the bonding state is ever occupied, and hence the eigenvalue associated with
the non-bonding state is zero, and we are left with only one non-zero eigenvalue. Noting that
we are working with only a single hole, the occupation number 〈n(k)〉 = 〈δn(k)〉, the change
in occupation number. Although the copper band is half-filled, we can consider the system
to be effectively empty since we are only interested in the oxygen occupation. Consequently,
rather than expecting 〈n(k)〉 to be a step function in a free electron picture, we would expect to
see only a peak of unit height at the Fermi surface. The presence of interactions complicates
this picture somewhat since this leads to the hole being distributed non-uniformly throughout
the Fermi volume. In order to compare systems of different sizes we must ensure that each
calculation has the same normalization. This is achieved by multiplying by the system size N
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to compensate for the different numbers of points in reciprocal space across which the single
particle is distributed. The quantity we actually calculate is

N〈δn(k)〉 =
∑

σjn

〈
p
†
j,σ pj+n,σ

〉
cos kn. (4)

Note that for a pure free electron model, this results in a peak at the Fermi level which
diverges linearly as a function of system size, N〈δn(kF)〉 ∼ N . In an interacting Fermi liquid,
where a finite fraction of the particle enters at the Fermi level, there is still a linearly divergent
peak, but some of the weight is redistributed across the remainder of the Fermi volume. For
a Luttinger liquid, the particle is distributed across the whole Fermi volume. We still expect
a divergence at the Fermi level, but in this case, it should diverge as N〈δn(kF)〉 ∼ Nα ,
where 0 � α � 1. A divergent peak is indicative of long-range order, whereas short-range
correlations converge to a limit which is independent of system size.

The evaluation and interpretation of the spin correlations is rather more straightforward.
Experimentally, one measures the copper–copper spin correlations via neutron scattering, and
the relevant operator is

〈|Sk|2〉 = 1

N

∑

jn

〈Sj · Sj+n〉 cos kn (5)

where the labels j and n are for the copper sites only. Although this quantity is
experimentally relevant, we do not attempt to make experimental predictions from these
simplified calculations.

Before analysing the results of the numerical calculations for the t–X model, let us
consider what a naı̈ve free electron picture would provide. The crucial quantity one must
consider is the band structure, or equivalently, the structure factor. For the spiral systems we
study here, the structure factor is given by

γ (k) = cos k + cos pk. (6)

We must be careful when comparing the correlated tight-binding model that we study to the
simple free electron picture. In the correlated model, there are localized holes on each copper
site, and a single delocalized oxygen hole, and these are distinct. This means we only need
consider the number density of the single oxygen hole, and 〈n(k)〉 = 〈δn(k)〉 in the correlated
picture. In a free electron picture, there is no localization, and we must consider all the holes.
The system is therefore half-filled, and the structure factor allows us to deduce which regions
we would expect to be filled. In all of the results presented here, we provide the free electron
structure factor for comparison.

3. Results

We studied a variety of different systems with system sizes ranging from 10 � N � 22 and
spiral pitches ranging from 2 � p � 5. For each system we calculated the occupation number,
N〈δn(k)〉, and the spin density 〈|Sk|2〉. For each value of p, we group systems of different N
in order to determine how the quantities of interest scale with system size for a given spiral
pitch.

As we explained previously, we study each value of p independently, and then search for
convergence at p 	→ ∞. The signature of convergence to the thermodynamic limit is the
equivalence of periodic and aperiodic boundary conditions. At p = 2 and 3, we see good
convergence of the calculations with respect to N, but changing the local boundary conditions
alters the results drastically, and these systems are certainly not representative of the limit
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p 	→ ∞ in which we are interested. For the systems with higher values of p which we
study, the results indicate that these systems may be representative of the p 	→ ∞ limit. In
figure 2, we show the results for the p = 4 spiral, and in figure 3 we show the results of the
p = 5 spiral.

In both figures 2 and 3 we only show the results for periodic boundary conditions around
the spiral segments, with both periodic and aperiodic boundary conditions around the whole
system. In fact, the results for aperiodic boundary conditions around the spiral show essentially
the same behaviour for both p = 4 and 5. We can identify several interesting features from
these data.

Let us first examine the occupation numbers shown in figures 2(a) and 3(a). As we
discussed in the previous section, we can quite easily compare the results of these calculations
to what we would expect from the free electron gas. In the free electron picture we expect
the occupied regions to occur in the minima of the structure factor. Comparing the numerical
results (symbols) with the structure factors (solid lines), we see that the occupied regions in
the correlated model are consistent with those expected in the free electron model, and the
expected Fermi surfaces have many parts. However, there is no indication of any divergence
at the Fermi points, indicating that the additional hole does not enter principally at the Fermi
level, but is spread across the Fermi volume. The largest correlations are not provided by the
largest systems, indicating that the high peaks are truly non-divergent. This is evidence for
non-Fermi liquid behaviour in the three-band model at low doping.

We may also obtain much useful information from the spin correlations shown in
figures 2(b) and 3(b). The numerical data are indicated by the symbols, whilst the solid
lines represent the free electron structure factor scaled to have area s(s + 1) = 3

4 . The
similarity between the numerical data and the structure factor is striking. There is no sign of
any divergent spin correlations, and hence there is no long-range order. The resemblance of
the numerical data to the structure factor indicates that the correlations are primarily nearest
neighbour, and this is indicative of a spin-dimerized ground state. Such a state is reminiscent
of the RVB state proposed by Anderson [8], and is highly quantum with no classical analogue.

4. Discussion and conclusions

In this work, we have provided evidence for the possible non-Fermi liquid behaviour of
a single hole in a high-temperature superconductor. Starting from the natural three-band
model of the CuO2 planes, we derived a low-energy effective Hamiltonian which retains
the essential character of the ALM. We then proceeded to numerically solve this model on
a sequence of geometries which are equivalent to the square lattice in the thermodynamic
limit. Although computational constraints prevent this limit from ever being truly reached,
we have been able to perform calculations on sufficiently large systems to remove any
dependence on boundary conditions. This suggests that our largest systems are representative
of the infinite limit. These calculations have demonstrated that a single oxygen hole on
the CuO2 lattice generates highly quantum short-range spin correlations, yielding a strongly
dimerized ground state. The hole motion strongly lifts the spin degeneracy to provide a
low-spin ground state where all spins are paired in local singlets. This is in direct contrast
to the popular one-band t–J model, where one expects the hole motion alone (J = 0) to
provide Nagaoka ferromagnetism, and one must rely on the high-order superexchange in
order to provide the observed low-spin ground state. Moreover, we note that the Heisenberg
interactions stabilize an ordered antiferromagnet, physically quite distinct from the state
we have studied, which contains only short-range correlations and no long-range order.
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(a)

(b)

Figure 2. Finite size scaling of (a) N〈δn(k)〉, (b) 〈|Sk|2〉 on the p = 4 spiral. The solid lines
represent the free electron structure factor scaled to (a) unit area, (b) area s(s + 1) = 3

4 .

This suggests that the single-band picture of the CuO2 planes does not correctly reproduce the
ground state of the ALM.
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(a)

(b)

Figure 3. Finite size scaling of (a) N〈δn(k)〉, (b) 〈|Sk|2〉 on the p = 5 spiral. The solid lines
represent the free electron structure factor scaled to (a) unit area, (b) area s(s + 1) = 3

4 .

We also observed non-Fermi liquid behaviour in these calculations, with the results
providing no evidence for a discontinuity at the Fermi points expected from Fermi liquid
theory. Although the occupied regions are broadly in line with the Fermi picture, the lack of a
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t ′

t ′′

Figure 4. An illustration of how effective t ′–t ′′ hopping can result from the X-term of the t–X–J

model, in a specific spin background.

discontinuity means that the hole does not necessarily enter the system at the Fermi point, but
is non-uniformly distributed across the entire Fermi volume. The strong correlations present
in the model appear to be sufficient to destroy the Fermi liquid behaviour that would otherwise
be seen.

It is now useful to re-examine the assumptions and approximations we made at the
beginning of this investigation. We have chosen to neglect a variety of physical interactions
(for example, tp) for simplicity, and it is not clear, given our omission of any hopping other
than V , whether the model implicitly contains t ′ or t ′′ (in a square-lattice Hubbard picture)
which are known [6] to correspond more closely to experiment than t alone. In fact, we find
that these terms are present, but are controlled by the nature of the spin state induced by the
hole motion. Our model clearly allows Zhang–Rice singlets to hop to nearest neighbours,
and one must consider the nature of the ground state to see that t ′ and t ′′ are also present. In
figure 4, we show how singlets between copper local moments allow Zhang–Rice singlets to
hop to second neighbours.

Note well that these hops only occur when there is a singlet in the relevant place in the
copper spin background. The calculations in this paper indicate that we expect the ground
state of the model to contain such singlets, and hence we predict the existence of an effective
t ′ and t ′′. The sizes of these parameters are determined by the spin correlations induced by
the hole motion in the vicinity of the hole, and can be deduced from a calculation, rather than
being imposed.

In conclusion, these results provide preliminary evidence for (a) the breakdown of Fermi
liquid theory, (b) the existence of an RVB-like ground state in the three-band model of the
high-temperature superconductors, due to correlations induced solely by the motion of a
single oxygen hole. This is in direct contrast to the predictions of the t–J model, where the
hole motion leads to Nagaoka ferromagnetism, suggesting that the one-band description is
inadequate for describing the rich behaviour of the cuprates. Furthermore, we demonstrate that
the three-band model we study implicitly contains Hubbard t ′ and t ′′ terms due to the nature
of the spin background induced by the motion of the hole. This provides some explanation
for the need to include t ′ and t ′′ that has been noted in the literature.

Since this study has only been of a single hole, we can make no statement about possible
superconductivity in the three-band model, and much further investigation is required.
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